SRI in SMS: Text lessons on rice production by SRI Pilipinas

Due to insistent requests, I am posting the following series of lessons in Tagalog/Pilipino on the System of Rice Intensification (SRI). We send these lessons 5-18 SMS texts at a time to farmers who request them. Thus we are able to provide lessons to farmers who have no Internet, newspaper or television access.

1. World record sa palay harvest: 448 kaban sa isang ektarya

Balita! Noong Nov 2011 nakuha ng 5 ordinaryong rice farmers sa bansang India ang pinakamatataas na palay harvest kada ektarya sa buong mundo:

Sumant Kumar, 448 kaban (bagong world record sa palay harvest); Krishna Kumar, 440; Nitish Kumar, 392; Ramanand Singh, 384 kaban; at Sanjay Kumar, 380.

Lahat ng 5 ay gumamit ng SYSTEM OF RICE INTENSIFICATION (SRI), na natutuhan lang nila noong 2008. Matapos ang 3 taon, na-break na nila ang world record.

Para makumpirma ang report, inimbistiga ng mga awtoridad sa agrikultura ng India ang mga bukid ng lima. At pinatotohanan nila ang mga nareport na ani.

Ang lumang world record (380 kaban) ay hawak ng bantog na scientist si Yuan Longping, imbentor ng hybrid rice, na 40 taon nagresearch tungkol sa palay.

Ito ang kahulugan ng bagong world record sa palay harvest: Magsasaka, tinalo ang siyentista — ANG SRI AY MADALING MATUTUHAN NG MAGSASAKA

Tatlong taon lng, hindi dekada ang kinailangan ng mga magsasaka para makakuha ng napakatataas na ani — SA SRI, MABILIS ANG RESULTA.

Hindi lang isa kundi 5 magsasaka ang tumalo sa lumang world record–HINDI ITO TSAMBA, TOTOONG EPEKTIBO ANG SRI, MADALING MATUTUHAN AT MABILIS ANG RESULTA

Hinati ni Sumant Kumar ang kanyang bukid sa dalawa: sa isa, karaniwang sistema ang ginamit niya, sa kabila, sistemang SRI ang ginamit nya.

Sa karaniwang sistema, umani sya ng 130 kaban/ektarya. Sa sistemang SRI, umani siya ng 448 kaban/ektarya. Malinaw na mas epektibo ang SRI!

Sa mga susunod pang serye ng txt, ipaliliwanag namin ang SRI, para magamit din nyo ito sa inyong palayan. Libre ito. Walang mababawas sa load nyo.

Ang susunod na serye ay sa ITSURA NG PALAY NA MKPGBIBIGAY NG 22,400 KILONG BUTIL(448 kban) KADA EKTARYA, ang kailangang dami ng uhay at butil kada uhay.

Bago burahin yng mga naunang txt, pkikopya po sa notebook. Pwde n po b itext ang susunod n serye? Pkisend po 1 sa 3 sagot: “TXT PLS”/”HNDI PA”/”AYAW NA”
./sri.world_record.msg/

2. Ang itsura ng palay na pang-world record

Ano ang hitsura ng palay na magbibigay ng world record na 22,400 kilo sa isang ektarya? Ilang uhay dapat sa 1 puno, ilang butil sa 1 uhay?

Sa SRI, 25 cm ang dstansya sa bawat puno, o 4 na puno kada 1 metro, 16 na puno (4 x 4) kada metro kwadrado, at 160,000 puno (16 x 10,000) sa 1 ektarya.

Kung paghahati-hatian ang 22,400 kilo ng butil ng 160,000 puno ng palay (22,400 hinati sa 160,000), kailangang magbigay ang isang puno ng .14 kilo.

Dahil 1 kilo ang karaniwang bigat ng 40,000 butil, ang .14 kilo ay may 5,600 butil (.14 x 40,000). Bawat puno, kng gayon, ay dapat mgbunga ng 5,600 butil.

Ito ang mga kombinasyon ng uhay-kada-puno at butil-kada-uhay na magbibigay ng 5,600 butil: 56 uhay/100 butil; 50 uhay/112 butil; 40 uhay/140 butil;

35 uhay/160 butil; 32 uhay/175 butil; 28 uhay/200 butil; 25 uhay/224 butil; 20 uhay/280 butil; 16 uhay; 350 butil.

Ayon sa mga matagal nang gumagamit ng SRI, madaling makakita sa SRI ng 20, 30 hanggang 40 uhay at 150 hanggang 250 butil.

Ang hamon, para maabot ang world record, ay makuha ito di lamang sa iilang puno, kundi sa bawat isa sa 160,000 puno sa 1 ektarya. Mahirap pero pwde.

Ang susunod na serye ay tngkol sa ANIM NA PRINSIPYO NG SRI. Ang mga prinsipyong ito’y hndi nagbabago, kahit magbago ang lugar o kondisyon ng gamit ng SRI.

Bago burahin yng mga naunang txt, pkikopya po sa notebook. Pwde n po b itext ang susunod n serye? Pkisagot lng po: “TXT PLS”/”HNDI PA”/”AYAW NA”
./sri.phenotype.msg/

3. Anim na prinsipyo ng SRI

PRINSIPYO 1. Mglagay ng maraming kompost/organikong mteryal sa lupa. BAKIT:ibabalik ng kmpost ang mga organismong natural na nagbibigay-sustansya sa lupa.

PRINSIPYO 2. Huwag saktan ang punla. BAKIT: pag nasaktan o nasugatan ang punla, laluna pag nagsimula na itong magsuwi, hndi na sya magsusuwi ng marami.

PRINSIPYO 3. Ilipat ang punla ng maaga. BAKIT: Mas madali itong gumaling mula sa anumang pnsala saka mas mahaba ang panahon nya para magsuwi ng marami.

PRINSIPYO 4. Bigyan ang bawat puno sapat na espasyong solo nila. BAKIT: para makakuha bawat puno ng sapat na sustansiya, tubig, hangin at sinag ng araw.

PRINSIPYO 5. Kailangang makapasok sa lupa ang hangin. BAKIT: dahil kailangan ng mga organismo sa lupa at ng mga ugat ng halaman ang oxygen.

PRINSIPYO 6. Tulungang lumago at lumalim ang ugat ng palay. BAKIT: Kung manipis at mababaw ang ugat, hndi magsusuwi at mamumunga ng marami ang palay.

Dalawa ang epekto ng 6 na prinsipyong ito sa palay: DADAMI ANG SUWI, UHAY AT BUTIL NG PALAY; AT KAKAPAL AT LALALIM ANG MGA UGAT NITO. Importante pareho.

Kahit ilan lang sa 6 na prinsipyo ang masunod, mkakakita na ng magandang epekto sa palay. Mas maraming prnsipyo ang nasusunod, mas maganda ang epekto.

Pnkamaganda kung lahat ng prnsipyo ng SRI ay nasusunod, dahil bawat prnsipyo ay sumusuporta sa iba pa. Madaling sundin lahat, kng maliit muna ang pitak.

Ang 6 na prinsipyo ng SRI ay dapat magsilbing gabay sa iba’t ibang lugar at kondisyon, dahil ang 6 na ito ang esensiya ng SRI bilang isang sistema.

Ang susunod na serye ay ang SARI-SARING PRAKTIKA NG SRI. Ang mga praktikang ito ay maaaring magbago batay sa lugar, kondisyon at diskarte ng magsasaka.

Bago burahin yng mga txt, pkikopya po sa notebook. Itetxt na po b namin ang susunod n serye? Pumili ng 1 sa 3 sagot: “TXT PLS”/”HNDI PA”/”AYAW NA”
./sri.principles.msg/

4. Sari-saring praktika ng SRI

MGSIMULA SA PNKAMALIIT nyong pitak, 50-500 metro kwadrado lng (50-100 lng, kng walang kompost). Alamin muna mga problema sa SRI bago sumubok sa malaki.

1-2 buwan bago mgtanim, humingi/mg-ipon ng DAYAMI & SARI-SARING ORGANIKONG MATERYAL (DAHON,TAENG HAYOP, atbp), ikalat sa bukid, at araruhin para mabulok.

Pwde rng itambak mga bubulukin sa isang imbakan n may bubong at di nauulanan, para mailagay ang kmpost kng saan lng kailangan, hlimbawa, sa kama ng punla.

8-12 araw bago mgtanim, ibabad ang bnhi ng 24-48 oras at isabog sa kama nang MAS MADALANG SA NKAGAWIAN, para mas mdaling mghiwalay ang ugat ng mga punla.

Kng 2 dahon na ang punla (IDAD 8-12 ARAW), ilipat na ang mga ito; ang pglilipatang bukid ay HNDI DAPAT BAHA kundi MAPUTIK LNG, para madali itong markahan.

Ityempo ang pglilipat HABANG HNDI MAULAN. Gumawa ng kalaykay na may layong 25cm ang mga ngipin; mrkahan ang pglilipatang bukid ng mga kwadradong 25×25 cm.

Mgtanim ng ISANG PUNLA SA BAWAT KROSING ng mga kwdrado. Tiyaking ksama sa punla ang bahay-bnhi at putik sa ugat. Tpusin ang pgllipat sa loob ng 20 minuto.

Pgklipat, HWAG AGAD BAHAIN ANG BUKID, para di lumitaw ang kuhol. Gawing manaka-naka (INTERMITTENT) ang IRIGASYON; patuyuin 5-7 araw, bahain 2-3 araw.

MGLINIS MABUTI NG DAMO kada 7-10 araw, gamit ang kamay o rotary weeder. PAG MADAMO, MGLINIS AGAD!. Mglinis dn tuwing baha ang pitak at malambot ang lupa.

Ang weeder ay parang munting pison na itnutulak sa pgitan ng mga puno. May mga ngipin ang 2 o 3 gulong nito, para matumba ang damo at mabungkal ang lupa.

Mganda ang rsulta ng SRI kng 20 suwi (o sobra pa) ang namumunga sa bawat puno; bawat suwi ay may 100 butil (o sobra pa) = mahigit 2,000 butil kada puno.

Pwdeng hndi muna gawin ang hndi pa kayang hakbang (halimbawa ang kontrol sa tubig o rotary weeding). Pero MAS MARAMI SA SRI ANG NASUSUNOD, MAS MAGANDA.

Ang pnakaimportante, SUBUKAN NGAYON DN SA MALIIT NA PITAK (100-500 metro kwadrado), para makita. KUNG IPGPAPALIBAN, WALANG MATUTUTUHAN. SUBUKAN AGAD!

Kung plano nyong subukan ang SRI, itxt po sa amin: Gagawin ko ang SRI sa buwan ng____, sa ____metro kwdradong pitak sa bayan ng______, probnsya ng______.

Pwde po idownload mula sa Internet ang libreng SRI video. I-search lang “World Bank SRI video”. Pwde rn namin ipadala DVD sa inyo, P100 ang bayad.

Sa susunod na serye, iisa-isahin ang mga HAKBANG na gagawin sa SRI, mula land prep hanggang sa pagkontrol ng damo.
./sri.practices.msg/

5. Mga hakbang na gagawin sa SRI

Tapos na po ang mga lessons, kailangang isa-praktika na ito, at magtanim ng palay gamit ang SRI. Maglaan na ng maliit na pitak pantesting (trial plot).

Tama lang ang 50-500 sqm pantesting. (Kung nag-aaral lumangoy, sa mababaw na ilog muna, hndi sa malalim na dagat.) Balikan natin ang mga praktika ng SRI:

LAND PREP: Lagyan ang pitak ng maraming kompost o vermicast. Kasindami, kng maaari, ng inani sa pitak. Hlimbawa, 5 bag ng kompost kung 5 kaban ang inani.

LAND PREP: Pag nasuyod na ang lupa, mag-ispray ng IMO para mamatay ang mga buto ng damo at lumaki nang mabilis ang mga tumubo na. Tapos, suyurin ulit.

PAGPUPUNLA: Gumamit ng punlaan na 50% lupa, 50% kompost. Salain ang binhi sa tubig-alat. Yung mga lumubog lang ang ipunla. Itapon yung lumutang.

PAGPUPUNLA: Maglaan ng 50 gramong binhi kada 100 sqm na pglilipatan. Ipunla nang madalang: 1 metro kwdradong seed bed o seed trays kada 50 gramong binhi.

PAGTATANIM: Ilipat ang punla pag may 2 dahon na (8-12 araw). Kumuha ng punla gamit ang pala/kutsara ng kantero. Kapalan ang lupa para di tamaan mga ugat.

PAGTATANIM: Ihiwalay ang 1 punla (hndi 2 o 3, kundi ISA), kasama pa ang palay, lupa at putik sa ugat, at itanim sa distasyang 25 x 25 cm (10 pulgada).

PAGTATANIM: Ilipat ang punla parang baby na inililipat galing duyan papnta sa kama: hndi sya naistorbo, nagising o nsaktan at walang sugat, pilay o bali.

KADA 7-10 ARAW: Bahain ang lupa (2-3 araw) para mbulok ang damo, patuyuin ng mas mtagal (5-7 araw), para habulin ng mga ugat ang tubig sa ilalim ng lupa.

DI DAPAT MKABUWELO ANG DAMO. Pag tuyo ang lupa, mglalabasan ang damo. Bunutin/bungkalin agad sila, gamit ang kamay o weeder. Pgkatapos, magspray ng IMO.

Ang susunod na serye ay tungkol iba pang BENEPISYO SA MAGSASAKA ng System of Rice Intensification (SRI), bukod sa mataas na ani.
./sri.stepxstep.msg/

6. Mga benepisyo sa magsasaka

Alam na po natin na maitataas ng SRI ang ani sa palay. Noong Nobyembre 2011, ang pnkmataas na ani sa palay sa buong mundo ay naitala ng SRI sa India.

Matipid ang SRI sa binhi. Ang kailangan lng ay 5 kilong binhi kada ektarya, di tulad sa ibang sistemang gumagamit ng 20 kilo, 40, o sobra pa kada ektarya.

Matipid ang SRI sa tubig, Sa karanasan, 40-50% ng tubig ang matitipid, dahil sa SRI, hindi binabaha ng tuluy-tuloy ang bukid kundi pinatutuyo rin.

Matipid ang SRI sa abono dahil sa SRI, ang lupa ay pinatataba gamit ang mga binulok na organikong materyal (kompost), hindi ang komersiyal na abono.

Sa SRI, maaring mas maraming trabaho sa simula. Pero pag kabisado na ang sistema, menos trabaho rin sa SRI, ayon sa matagal ng gumagamit nito.

Ang mga puno ng palay na laking-SRI ay matitibay. Ang mga ugat ay malago at malalim. Kayat mas kaunti ang pnsala sa palay dulot ng bagyo, baha o tagtuyot.

Mas kaunti ang methane na sumisingaw sa bukid na hindi nkababad sa tubig ng tuluy-tuloy (tulad ng itinuturo sa SRI). Ang methane ay isang greenhouse gas.

Dahil mas kaunting methane ang nalilikha kung SRI ang gamit, ang SRI ay mkkatulong maiwasan ang pagbabago sa klima at pag-init ng mundo (global warming).

Ang SRI ay hndi binhi/variety, kundi paraan ng pg-aalaga kayat mas marami kang pgpipiliang binhi: malagkit, mabango, inbred,hybrid,fancy, may kulay, atbp.

Ang susunod na serye ay ang PAGGAWA NG KOMPOST mula sa organikong materyal. Kompost ang ginagamit sa SRI para tumaba nang husto ang lupa.
./sri.benefits.msg/

7. Gumawa ng kompost

GUMAWA NG KOMPOST (binulok na organikong materyal): Ito’y mayaman sa mga organismo sa lupa at mga itlog nila. Sila ang nagbibigay ng sustansya sa halaman.

Mag-ipon ng dayami (huwag sunugin!); haluan ng dahon, kusot, seaweeds (maganda!), tae ng hayop, at iba png organikong materyal. Takpan at hayaang mabulok.

Diligin ng regular. Ilang buwan lng, may kmpost k na. Kng sa bukid msmo bbulukin ang orgnikong materyal, ikalat ito 1 buwan bgo mgpunla, para mbulok muna.

GAANO KARAMI? Timbangin lahat ng inalis sa bukid (hal. 2000 kg palay + 500 kg gulay). Gnito karami dn, kng pwde, ang ilagay na kmpost (sa hal. 2,500 kg).

Sa abonong kemikal, may overdose; sa kmpost, wala. Mas marami, mas mganda. Kng kulang sa kmpost, liitan ang trial. Kng walang kmpost, kahit 50-100sqm lng.

Ang pnakamagandang pataba sa lahat ay ang dumi ng bulate (vermicast). Ito’y mayaman sa mabubuting mikrobyo, NPK, at micronutrients na maganda sa halaman.

Kng bibili dn lng ng abono, vermicast ang bilhin. Mas mbuti, mg-aral ng vermiculture, para mkagawa ng sariling vermicast. Huwag haluan ng abonong kemikal.

Sa susunod na serye, ipaliliwanag namin kung bakit mas maganda ang KOMPOST kaysa ABONONG KEMIKAL, at kung bakit hndi dapat paghaluin ang dalawa.
./sri.kompost.msg/

8. Ang diperensya ng kompost sa abonong kemikal

Ang diperensya ng KOMPOST sa ABONONG KEMIKAL: UNA, ang kompost ay maaring gawin ng magsasaka; ang abonong kemikal ay bibilhin (o uutangin) pa;

IKALAWA, habang tumatagal, tumataba at gumaganda ang lupa sa kompost; umaasim at nasisira ang lupa sa abonong kemikal;

IKATLO, ang mga tanim na pinalaki sa kompost ay puno ng sustansya; ang pinalaki sa kemikal ay kulang na sa sustansiya, may dala pang sakit.

Ang KOMPOST ay tinatawag ding ORGANIC FERTILIZER. Kahit kulang sa kompost, huwag itong haluan ng abonong kemikal. Masasayang ang ating kompost!

Masustansya ang kompost dahil sa dami ng dala nitong mga organismo sa lupa at itlog nila: mga mikrobyo, nitrogen-fixing bacteria, amag, lumot, lebadura,

kutong-lupa, hanip, alupihan, palasingsingan, langgam, anay, bulate, atbp. Pgkain nila ang organikong materyal, lason sa kanila ang abonong kmikal.

Hndi lang NPK at iba pang sustansya at micronutrients ang ibinibigay ng kompost. Ibabalik din nito sa lupa ang mga organismong pinatay ng abonong kemikal.

Masama ang abonong kemikal (purong NPK) sa mga organismong ito, kayat huwag haluan ng abonong kemikal ang kompost.

Pag hinaluan ng kemikal ang kompost, ang mga dala-dala nitong organismo at itlog nila ay malalason at mamamatay. HUWAG HALUAN NG KEMIKAL ANG KOMPOST!

CONGRATULATIONS! Tapos na po ang SRI lessons natin. Ang susunod na serye ay ang KOREAN NATURAL FARMING SYSTEM, mga pndilig sa bukid na mgagawa sa bahay.

Sa susunod n serye, ang una sa KNFS, ituturo kng PAANO MAGPARAMI NG INDIGENOUS MICROORGANISMS (IMO), mga katutubong mkrobyo sa lupa na mganda sa halaman.
./sri.komp_vs_npk.msg/

9. Magparami ng indigenous microorganisms (IMO)

MAGPARAMI NG INDIGENOUS MICROORGANISMS (IMO): Magsaing sa palayok ng 1-kilo bigas. Palamigin. Takpan ang bibig ng palayok ng tela/papel.

Talian ng goma, para hndi pasukin ng insekto. Ipwesto ang palayok sa mga nabubulok na dahon sa lilim ng mga puno o kawayanan (d best sa gubat).

Pagkaraan ng 3 araw, kung marami nang puting amag sa kanin, iuwi ang palayok. Haluan ng 1-kilo pulot o pulang asukal (walang halong tubig).

Takpan ng bagong tela/papel, talian ulit ng goma. Huwag higpitan ang takip, para mkasingaw! Itabi ng 7 araw sa madilim at malamig na lugar para maburo

(fermentation, tulad ng paggawa ng suka) hanggang mgmukhang putik. Ito ang IMO. Para gamitin, magtimpla ng 2 kutsara nito kada litro ng tubig.

I-spray ito sa kompost, para mas mbilis mabulok; sa kulungan ng manok at baboy, para mwala ang amoy ng dumi; foliar fertlizer sa palay at iba png halaman.

Pwde ring pangkntrol sa peste/sakit; ispray sa na-weeder na damo,para mabulok agad ito; sa kuhol, para lumambot ang kanilang shells.

Maraming klase ng IMO, kung papalitan ang kanin ng ibang lahok: kung mga lamang-isda, magiging FAA (fish amino acid), na mayaman sa nitroheno.

Kung mga prutas (puwedeng sobra sa hinog, hwag lng bulok), magiging FFJ (fermented fruit juice), na pmpatamis sa namumunga.

Kung talbos ng kngkong, kamote o alugbati o katawan ng saging na saba, magiging fermented plant juice (FPJ), na nagpapabilis sa paglaki ng mga halaman.

Ang susunod na serye: FISH AMINO ACID (FAA), para sa dagdag na nitroheno.
./sri.imo.msg/

10. Gumawa ng Fish Amino Acid (FAA)

Ang Fish Amino Acid (FAA) ay ginagamit na pamparami ng nitroheno sa lupa. Maaari itong i-spray o idilig sa halaman, sa kompost, at sa lupa.

Mag-ipon ng parte isda (tinik, bituka, hasang at balat) o suso. Timbangin. Ilagay sa banga o timba. Haluan ng kasimbigat na pulot o pulang asukal.

Takpan ang lalagyan at talian. Ilagay sa malamig/madilim na lugar. Hayaang maburo ng 10 araw. Ang makukuhang katas ay ang Fish Amino Acid (FAA).

Para gamitin, ihalo ang 2 kutsara ng FAA sa 1 litrong tubig. I-spray o idilig sa halaman, kompost, at lupa. Magbibigay ito ng nitroheno sa halaman.

Ang susunod na serye ay tungkol sa FERMENTED PLANT JUICE (FPJ), na tumutulong sa photosynthesis at para lumaki nang mas mabilis ang halaman
./sri.faa.msg/

11. Gumawa ng Fermented Plant Juice (FPJ)

Fermented Plant Juice (FPJ): mas mabilis dumami ang IMO, mas mabilis lumaki ang halaman, at nagiging mas berde ang mga dahon (mabuti sa photosynthesis).

Kumuha: 2 kilong talbos ng kamote, kangkong o alugbati, labong, o dumalagang saba. Tadtarin. Haluan ng 1 kilong pulang asukal. Iwan sa palayok ng 1 araw.

Takpan ng malinis na papel at talian. Matapos maburo ng 7 araw, pwde nang gamitin ang FPJ, 2 kutsara ng katas sa 1 litrong tubig, pndilig sa lupa at dahon.

Ang FPJ ay mayaman sa growth hormones mula sa halamang mabilis lumaki. Nakakatulong ito sa mabilis na paglago ng halaman. Nakapagpaparami din ito ng IMO.

Ang susunod na serye ay tungkol sa FERMENTED FRUIT JUICE (FFJ), na ginagamit pampatamis ng mga bunga.
./sri.fpj.msg/

12. Gumawa ng Fermented Fruit Juice (FPJ)

Ang Fermented Fruit Juice (FFJ) ay nagbibigay ng dagdag na potassium sa halaman at ginagamit na pampatamis sa prutas ng mga bungang-kahoy.

Kumuha ng 1 kilong hinog na prutas (puwera balat at buto). Puwede ang mangga, saging, papaya, abokado, o magulang na kalabasa.

Talupan, tadtarin, at ilagay sa banga. Huwag gumamit ng plastik o aluminum. Haluan ng 1 kilong pulot o pulang asukal.

Takpan ng malinis na tela o papel. Talian. Ilagay sa malamig/madilim na lugar. Hayaang maburo ng 7 araw. Ang makukuhang katas ay ang Fermented Fruit Juice.

Magtimpla ng pandilig: ihalo ang 2 kutsarang FFJ sa 1 litrong tubig. Ipandilig sa mga dahon at ugat. Kung malinis ang pagkakagawa, puwede ring inumin.

Ang susunod na serye ay tungkol sa ORIENTAL HERBAL NUTRIENTS (OHN), na ginagamit na pampalusog at pangkontra sa sari-saring sakit.
./sri.ffj.msg/

13. Gumawa ng Oriental Herbal Nutrient (OHN)

OHN: Magtadtad ng 5 kg luya o bawang. Ilagay sa garapon. Lagyan ng beer hanggang sa 1/3 ng garapon. Pagkaraan ng 12 oras, maglagay ng 1 kg pulang asukal.

Hayaang maburo ng 4-5 araw. Punuin ang garapon ng gin hanggang leeg. Tkpan at talian. Mghintay ng 10 araw. Kumuha ng sabaw na kasindami ng nilagay na gin.

Gawin ng 5 beses ang pglalagay ng gin / pgkuha ng sabaw. Sa ika-4 at ika-5 ulit, samahan ang gin ng dnikdik na sili, panyawan (mkabuhay), at

bunga ng neem. para tumapang ang timpla ng OHN. Para magtimpla ng pandilig: ihalo ang 2 kutsara ng OHN sa 1 litrong tubig.

Pwdeng ipandilig ang tinimpla sa lupa at dahon ng halaman, kasama ang IMO, FPJ at FFJ, kada linggo, pag nanghihina ang tanim, o pag mamumulaklak na ito.

Ang susunod na serye ay tungkol sa PAGGAWA NG CALCIUM PHOSPHATE, na ginagamit pampabulaklak, at CALCIUM, na ginagamit naman pampatatag sa bulaklak.
./sri.ohn.msg/

14. Gumawa ng Calcium at Calcium Phosphate

Ang CALCIUM PHOSPHATE ay ginagamit pampabulaklak. Magpakulo sa tubig ng 2 kilong buto ng hayop hanggang sa maalis ang laman at taba. Patuyuin pagkatapos.

Iihaw ang buto hanggang sa mag-kulay uling. Palamigin pagkatapos.

Ilagay sa banga o timba. Lagyan ng 5 galon na sukang natural (galing sa niyog, tubo, saging, sasa, atbp.), hindi synthetic. Takpan at itabi ng 30 araw.

Timpla: ihalo ang 2 kutsarang katas sa 1 litrong tubig. Idilig sa halaman, lupa at kompost.

Kung ang CALCIUM PHOSPHATE ay pampabulaklak, ang CALCIUM naman ay pmpatatag sa mga bulaklak ng halaman. Ganito gumawa ng CALCIUM na png-ispray o pandilig:

Magprito ng 2 kilong balat ng itlog hanggang mangitim. Palamigin. Ilagay sa banga o timba. Dagdagan ng 5 galon na sukang niyog (walang kulay).

Takpan. Itabi ng 20 araw. Timpla: ihalo ang 2 kutsarang katas sa 1 litrong tubig. Idilig o iispray sa halaman, lupa at kompost.

Sa susunod na serye, malalaman kung kailan ginagamit ang IMO, FPJ, OHN, FAA, calcium at calcium phosphate ang iba pang lahok ng NFS.
./sri.calcium.msg/

15. Kailan ginagamit ang iba’t ibang lahok ng NFS

Bawat halaman ay dumadaan sa paglaki (growth stage) at pamumunga (reproductive stage). Sa pagitan ay ang changeover period, pag malapit nang mamumulaklak.

Sa paglaki, magspray kada linggo ng IMO, FPJ, OHN at FAA. Kung mukhang nasobrahan sa nitroheno ang halaman, magspray ng calcium phosphate.

Sa pagitan, magspray kada linggo ng IMO, FPJ, OHN, calcium phosphate at calcium. Kung mabagal ang paglaki, magspray ng FAA.

Sa pagitan, pinakaimportanteng sustansiya ang calcium phosphate (calphos) para sa pamumulaklak at ang calcium para maging prutas ang bulaklak.

Sa pamumunga, magspray kada linggo ng IMO, FPJ, OHN, calphos at calcium. Mgspray din ng FFJ para tumamis ang mga bunga at ng FAA kung mabagal ang paglaki.

Habang gumaganda at tumataba ang lupa, maaaring mas madalang na ang pagspray ng mga ito.

Ang susunod na serye ay tungkol sa LACTIC ACID BACTERIA SERUM (LAS), na ginagamit pangkontra sa mga sakit na galing sa amag at virus.
./sri.nfs_sked.msg/

16. Gumawa ng Lactic Acid Bacteria Serum (LAS)

Ang LACTIC ACID BACTERIA SERUM (LAS) ay ginagamit pangkontra sa sakit na galing sa amag at virus.

Ipunin ang pinaghugasan ng bigas (na puno ng mikrobyo) sa isang timba o banga.

Paabutin sa 7” pulgada ang taas ng pinaghugasang tubig. Itabi ang banga sa malamig/madilim na lugar.

Pagkatapos ng 7 araw, alisin ang lumutang na latak. Itira lang ang tubig.

Ilipat ang tubig sa isa pang lalagyan. Haluan ng gatas, na 10 ulit ang dami kaysa tubig.

Takpan ng malinis na papel. Talian. Pagkatapos ng 7 araw, lulutang ang taba (mula sa gatas) at magkukulay-dilaw ang tubig.

Kunin ang dilaw na tubig. Haluan ito ng kasindaming pulang asukal. Itabi ng 7 araw sa malamig/madilim na lugar. Dito makukuha ang LAS.

Timpla: ihalo ang 2 kutsara ng LAS sa 1 litrong tubig. Pwdeng ipainom sa hayop, iispray sa kulungan para maalis ang amoy, o idilig sa halaman at sa kmpost.

Ang susunod na serye ay tungkol sa CARBONIZED RICE HULL(CRH) o INULING NA IPA, pandagdag ng micronutrients at pampaganda sa istruktura ng lupa.
./sri.las.msg/

17. Gumawa ng Carbonized Rice Hull (CRH) o Inuling na Ipa

Ang CARBONIZED RICE HULL (CRH) o INULING NA IPA ay nagdadagdag ng micronutrients at nagpapaganda sa istruktura ng lupa. Tulad ito ng paggawa ng uling.

Gumawa ng CARBONIZER mula sa karaniwang lata ng gaas o biscuit (18 liters), pwedeng kwadrado (23 x 23 x 34 cm) o bilog. Alisin ang ibabaw (top) ng lata.

Sa ilalim ng lata, gumawa ng bilog na butas, 10 cm ang lapad (diameter). Sa paligid ng lata, gumawa ng maraming mliliit na butas (na hndi kasya ang ipa).

Gawing 2.5 cm ang distansya ng mga butas sa isa’t isa, o 500 butas lahat sa paligit ng lata. Ang mga butas na ito’y dadaanan ng hangin (hindi ng ipa).

Gumupit ng #24 GI sheet na 31.4 cm ang lapad at 2 meters ang haba. Irolyo ito nang pahaba para magkorteng tubo na 10 cm ang lapad at 2 metro ang haba.

Talian ng mga alambre ang tubo ng yero para hindi ito bumuka. Isusuot ang tubong ito sa 10-cm na butas sa lata, para makalabas ang usok ng pag-uuling.

Tiyaking 5-8 cm lang ng tsimineya (mahabang tubo) ang nakasuot sa lata, at mahigpit ang pagkakasuot nito sa butas para hindi ito dumausdos pababa.

Sa patag na sahig na lupa o semento, magsimula ng apoy mula sa tuyong kahoy o bao. Ipatong ang carbonizer sa apoy. Magtambak ng ipa sa ibabaw ng lata.

Tambakan ng ipa ang lata hanggang sa matakpan ito nang husto. Pwedeng magtambak ng hanggang sa 50 sako ng ipa. Ang usok ay dapat lumabas sa tsimineya.

Kung malakas ang hangin, lagyan ng mas maraming ipa ang tinatamaan ng hangin dahil mas mabilis magiging uling ang parteng ito.

Tandaan: dapat mamatay ang apoy, para mainit na baga lang ang matira. Kung apoy at hindi baga ang mananaig sa loob, ang ipa’y magiging abo, hindi uling.

Yung mga ipa sa ilalim ng tambak ang pinakahuling magiging uling. Palahin ang mga ito sa tuwi-tuwina at ilagay sa bandang itaas ng tambak.

Magtakip ng panyo sa ilong at bibig habang gumagawa ng CRH, dahil hindi maganda sa kalusugan kung tuluy-tuloy na lumalanghap ng usok nito.

Kung naging uling na ang 90% ng ipa, alisin na ang carbonizer at nagbabagang kahoy/bao sa gitna. Iwasang sumiklab ang apoy para hindi maging abo ang ipa.

Ayusin ang tambak ng 90% uling at 10% ipa para magkorteng bundok ulit at magluto ang natitirang ipa hanggang maging uling din.

Wisikan ng tubig ang CRH para unti-unting mamatay ang mga baga, bumaba ang temperatura nito, tumigil na ang pagluluto, at hindi maging abo ang uling.

Hintaying bumalik ang temperatura ng tambak sa normal at matuyo ang idinilig na tubig, bago gamitin ang CRH o ilagay ito sa mga sako.

Ang susunod na serye ay tungkol sa paggawa ng BOKASHI, isang klase ng organikong pataba na ginagamit ng maraming magsasaka sa Japan.
./sri.crh.msg/

18. Gumawa ng Bokashi

Gumawa ng BOKASHI, isang magandang klase ng organikong pataba na unang ginamit sa Japan. Ang prosesong ginagamit ay pagbuburo (tulad ng paggawa ng suka).

Materyales para sa paggawa ng 30 sakong BOKASHI (pwede sa 1 ektarya): 12 sako, tuyong dumi ng hayop; 10 sako, inuling na ipa (CRH); 8 sako, matabang lupa;

Karagdagang materyales: 4 sako, darak; 4 kilo, pulang asukal o pulot; 3.5 litro, tuba; .15 litro (16 kutsara), FPJ o FAA; .15 litro (16 kutsara), IMO.

Pumili ng nasisilungang lugar na di binabaha kung umuulan. Maglagay ng bubong at kanal sa paligid, kung kailangan. Mas mabuti kung sementado ang sahig.

Mas mabuti rin kung ang lugar ay malapit sa bahay, para madaling bantayan, at di mapuntahan ng mga hayop. Pgsama-samahin lahat ng materyales. Haluin ito.

Habang hinahalo, diligan ng kaunting tubig na may halong tuba. Kung may tubig na tumulo pag piniga ang halo, sobra na ang tubig. Itigil na ang pagdidilig.

Haluing mabuti. Palahin ang ilalim at ibunton sa tuktok ng tambak, para magkorteng bundok ito. Takpan ng sako. Haluin ang tambak araw-araw.

Sa unang 7 araw, kung hndi matiis ang init ng tambak pag ipinasok ang kamay dito, haluin nang 2 ulit sa isang araw, para mabawasan ang init ng tambak.

Sa ika-7 araw, diligan ang tambak para mabasa ulit ito. Titigil ang proseso ng pgbuburo kng kulang sa tubig. Pero masisira ang bokashi kung sobrang tubig.

Sa ika 8-14 araw, kung di na mainit sa kamay ang tambak, hndi na ito kailangang haluin. Takpan na lang ito habang hinihintay na matapos ang pagbuburo.

Mtapos ang 14 araw, pwde nang gmitin ang bokashi. Haluang muli ng kasindaming lupa, bago gamitin sa bukid. Organikong pataba ito, kayat walang overdose.

Ang susunod na serye ay tungkol sa paggawa ng ORGANIC PESTICIDES para makontrol ang mga peste sa halaman.
./sri.bokashi.msg/

19. Gumawa ng organic pesticides

Ang mga sumusunod na ORGANIC PESTICIDES ay ginagamit ng mga trainers namin. Maaaring ipalit ang ibang sangkap, depende sa makukuhang lokal na materyal.

Ang mga organic spray ay madalas binubuo ng dalawang bahagi: a) ang mga pinagmumulan ng aktibong sangkap, at ang likidong pantunaw sa aktibong sangkap.

Mga karaniwang pnagmumulan ng aktibong sangkap: siling labuyo; tubli; dahon ng tabako, neem, kakawate; katawan ng makabuhay; laman ng nami; bawang; atbp.

Mga karaniwang pantunaw sa aktibong sangkap: OHN, alcohol, langis, mantika, tubig na may sabon, o iba pang likido na makatutunaw sa aktibong sangkap.

ORGANIC FOLIAR PESTICIDE: Mag-ipon sa 1 sako ng 3-4 kilo ng tae ng kambing, at tig-1 kilo ng dahon ng kakawate, dahon ng neem, at katawan ng makabuhay.

Ibabad ang sako ng mga sangkap sa 1 dram ng tubig. Pagkatapos ng 3 araw, pwde nang ispray ang tubig sa dram sa mga parteng apektado ng peste.

ORGANIC SPRAY KONTRA TUNGRO: Magdikdik hanggang maging pino ng 4 na bilog ng bawang at 4 na bilog ng sibuyas habang ihinahalo ang 4 na kutsarang mantika.

Hndi lulutuin ang lahok. Pag pinung-pino na, ihalo sa 16 litrong tubig. Ispray sa parteng apektado ng tungro.

ORGANIC SPRAY KONTRA ATANGYA. Mag-ipon ng dahon ng tabako, bunga ng siling labuyo, at dinikdik na katawan ng makabuhay (isang baging).

Ibabad muna ang ugat ng tubli ng 7 oras sa putik, bago gamitin, para lumambot ito at maglabas ng katas.

Ibabad ang mga pinagsama-samang sangkap ng 24 oras sa 16 litro ng tubig. Ispray ang pinagbabarang tubig sa mga atangya.

Sa mga sakit na dala ng FUNGUS (tulad ng leafblight), pwdeng gamiting pang-ispray ang IMO at ang organic spray kontra tungro.

CONGRATULATIONS! Natapos nyo na ang mga serye ng SRI at KNFS, na tinatawag ding ORGANIC SRI. Isa na lng ang kailangan para mkumpleto ang inyong pag-aaral.

Ang huling parte ng inyong pag-aaral ay ang praktikum: subukan ang SRI sa isang trial plot. Kung ito ang unang subok nyo, mgtesting muna sa 100-500 sqm.

Sa inyong PRAKTIKUM, patuloy po kaming mgbibigay ng payo sa txt. Pwde pong malaman kung anong buwan nyo planong subukan ang SRI?
./sri.org_pest.msg/

20. Praktikum: step by step

Tapos na po ang mga lessons, kailangang isa-praktika na ito, at magtanim ng palay gamit ang SRI. Maglaan na ng maliit na pitak pantesting (trial plot).

Tama lang ang 50-500 sqm pantesting. (Kung nag-aaral lumangoy, sa mababaw na ilog muna, hndi sa malalim na dagat.) Balikan natin ang mga praktika ng SRI:

LAND PREP: Lagyan ang pitak ng maraming kompost o vermicast. Kasindami, kng maaari, ng inani sa pitak. Hlimbawa, 5 bag ng kompost kung 5 kaban ang inani.

LAND PREP: Pag nasuyod na ang lupa, mag-ispray ng IMO para mamatay ang mga buto ng damo at lumaki nang mabilis ang mga tumubo na. Tapos, suyurin ulit.

PAGPUPUNLA: Gumamit ng punlaan na 50% lupa, 50% kompost. Salain ang binhi sa tubig-alat. Yung mga lumubog lang ang ipunla. Itapon yung lumutang.

PAGPUPUNLA: Maglaan ng 50 gramong binhi kada 100 sqm na pglilipatan. Ipunla nang madalang: 1 metro kwdradong seed bed o seed trays kada 50 gramong binhi.

PAGTATANIM: Ilipat ang punla pag may 2 dahon na (8-12 araw). Kumuha ng punla gamit ang pala/kutsara ng kantero. Kapalan ang lupa para di tamaan mga ugat.

PAGTATANIM: Ihiwalay ang 1 punla (hndi 2 o 3, kundi ISA), kasama pa ang palay, lupa at putik sa ugat, at itanim sa distasyang 25 x 25 cm (10 pulgada).

PAGTATANIM: Ilipat ang punla parang baby na inililipat galing duyan papnta sa kama: hndi sya naistorbo, nagising o nsaktan at walang sugat, pilay o bali.

KADA 7-10 ARAW: Bahain ang lupa (2-3 araw) para mbulok ang damo, patuyuin ng mas mtagal (5-7 araw), para habulin ng mga ugat ang tubig sa ilalim ng lupa.

DI DAPAT MKABUWELO ANG DAMO. Pag tuyo ang lupa, mglalabasan ang damo. Bunutin/bungkalin agad sila, gamit ang kamay o weeder. Pgkatapos, magspray ng IMO.

Kung gsto ng patuloy naming payo at teknikal na suporta, itext sa amin ang petsa ng pagpupunla nyo para sa SRI trial. Mgtxt kng may problema. Good luck!
./sri.praktikum.msg/

Advertisements

The new SRI world record in rice yield: what does it mean?

In November 2011, five Indian farmers broke the old world record in rice yield of 19.0 tons/hectare (380 cavans/ha), held by world-famous scientist Prof. Yuan Long-ping, inventor of hybrid rice.

The best of the five, Sumant Kumar, got a yield of 22.4 tons/ha, the new world record.

How did these five farmers beat the old world record? They all used a new method of growing rice, which they learned in 2008. The method is called System of Rice Intensification (SRI).

The new world record tells us three things about SRI:

ONE: SRI is farmer-friendly. Using it, ordinary farmers obtained a yield higher than the best rice scientist in the world could attain. They got a yield higher than IRRI, Philrice, or any other rice scientist has attained. With SRI, farmers can do better than scientists.

TWO: SRI leads to quick results. Prof. Yuan Long-ping had devoted almost 40 years of his professional to improving rice yield, and managed to go as high as 19.0 tons/ha. The five farmers learned SRI only in 2008. Within three years, they had broken Prof. Yuan’s record.

THREE: SRI is reliable. If only one farmer had broken the world record, we might hear comments like, “Tsamba!” (“Lucky break!”). If two or even three had done it, Doubts might persist among a few hardline skeptics. But with five SRI farmers, there is no doubt at all, that SRI is effective in improving rice yields.

We have been promoting SRI among farmers since 2000, long before it became the world record-holder in rice yield. With this development, there is no more reason for the government to keep ignoring this method.

Philippine SRI map: where are the SRI trainers, farm trials and trainings conducted so far

I have not been very active in posting messages lately because a particular advocacy has kept me really busy.

I coordinate SRI Pilipinas a national network of farmers and organic farming advocates that promote the System of Rice Intensification (SRI). I’ve made a few previous posts about this method, including the Nov. 2011 news that five SRI farmers in India have broken the world record in rice yield previously held by world-famous Prof. Yuan Long-ping, inventor of hybrid rice.

I am posting here two maps — 1) Luzon, and 2) Visayas and Mindanao — showing the areas where we have SRI trainers (who can conduct one-day trainings for free), where we have conducted one-day SRI trainings (almost 130 throughout the country so far), and where farmers have conducted SRI trials, as far as we know.

The maps may not show any place marker at first (teardrop-shaped icons) at first, because loading them takes time, especially over slow connections. Be patient. The man/woman icons stand for locations where we have SRI trainers.

The Luzon SRI map:

https://maps.google.com/maps/ms?msa=0&msid=217660476975716136489.0004bfc0fb7925a183aed&ie=UTF8&t=m&ll=14.186057,121.52486&spn=8.393733,5.322091&output=embed
View SRI Pilipinas (Luzon) Trainers, Trials and Trainings in a larger map

 

The Visayas/Mindanao SRI map:

https://maps.google.com/maps/ms?msa=0&msid=217660476975716136489.0004c186951922be416d5&ie=UTF8&t=m&ll=9.283828,122.552533&spn=6.462083,7.511902&output=embed
View SRI Pilipinas (Visayas & Mindanao) Trainers, Trials and Trainings in a larger map

Eventually we hope to have at least one SRI trainer in every rice-producing province.

 

 

From NOT ON OUR WATCH, a book of martial law recollections: the full text of “Lest We Forget” by Roberto Verzola

The book NOT ON OUR WATCH by Jo-Ann Maglipon (ed.) is now in bookstores, after a successful launching at the Metropolitan Museum of Manila, Central Bank Bldg., last May 10.

I wrote a chapter in that book, which is entitled “Lest We Forget”. The chapter includes my personal account of the torture I suffered under the military, the first time I tell the full story in public.

If you want the full text of this chapter, please click on this link: Full text of the chapter,

My online version is slightly different from the book version due to minor editing changes.

Some excerpts: (p.155-158)

Sometime in the afternoon, still within the critical twenty-four hour period after our arrest, my name was called. I braced myself for another round of interrogation. It was Esguerra and a few more officers. I repeated my Story, which no one believed, of course. So they made me do a “squat jump.” With one foot forward and the other back, you squat first, then jump as high as you can, falling with the other foot forward. Then you jump again, for as many times as you can. Until I could barely stand. No body contact at all. Esguerra told me, “O hindi yan torture ha! (See, that’s no torture!) We do that to PMA cadets all the time!” Well, I’ll take the “squat jump” over blows to the solar plexus anytime. After the session, my legs hurt so much and I couldn’t walk by myself. Two men had to assist me on the way back.

But I was not going back to the ISAFP jail cell. I was being “borrowed” by another intelligence unit for further interrogation. ISAFP had its methods; Metrocom intelligence had its own. Metrocom was the Metropolitan Command of the Philippine Constabulary (PC), headed then by Gen. Fidel Ramos. Lieutenant __ Garcia of the Metrocom Intelligence and Security Group (MISG) took me to Camp Panopio along EDSA near the PC headquarters. He made a perplexing comment which made sense only later, “So, you’re taking up electrical engineering!”

The MISG office was bigger than the ISAFP office I saw. It was longish, and the middle served as an aisle separating a row of perhaps eight to ten tables. I was taken to the far corner, on the right. With Garcia was a senior officer whose name escapes me now. After the usual questions, I told them the Story. They didn’t believe me. They gave me paper and time to write my personal background and history in the movement. Same Story. Then they brought in the Machine. Two lengths of wire extended from it, both ending with bare wire, the insulation stripped. One end was tied around the handle of a spoon. The Machine is a field telephone generator. It has a wheel with a handle. The wheel turns a dynamo, which generates electricity that causes a distant telephone to ring. An operator at the distant end picks up the phone, and the two ends can talk. The field generator probably generates forty to sixty volts and, if turned really fast, may give as high as ninety volts or even more. The standard house wiring in the Philippines is 220 volts. In the U.S. it is 110. My interrogators tied the end of one wire around my right index finger and inserted the spoon into my pants, on my right waist, until it rested where the leg meets the lower abdomen, near the crotch. My body would complete the circuit.

When I was young, I used to watch my uncles and older cousins as they slaughtered a pig. As soon as the pig realized something bad was going to happen, it would shriek for dear life. It was a grating shriek of helplessness, desperation, and terror, one that rang in your mind long after the pig was dead. It was that kind of scream that issued from my throat every time my torturers spun the wheel around. It was totally involuntary, the automatic response of a body invaded by an alien current of a thousand spikes snaking through one’s cells and nerves. I could stifle it no more than I could stop my hand from jerking away when shocked briefly by live house wiring.

Across the aisle were two civilian Metrocom employees. They were women, apparently on overtime. They went on with their work, as if they heard or saw nothing. Business as usual. No sign of surprise or concern. Metrocom apparently used the electric shock treatment often enough to make its civilian employees inured to screams.

Since it was mid- to late afternoon by the time we got to the Metrocom headquarters, I knew that my twenty-four-hour margin was almost up. I had already missed several meetings. Within twenty-four hours, houses whose locations I knew would be abandoned. In those twenty-four hours, I had forced myself to forget all the names and aliases I had ever heard in the underground. (As a consequence, my memory of people’s names has been bad ever since.) I also realized that the smallest information the MISG got from me now would only lead to more questions and further interrogation. And if I gave some more, then they would want even more, and the torture would not stop until I had given all. So I’d have to spill all, or nothing. At this time, they were still asking me details about the story I had made up. And we all knew that this was leading to a dead end.

Eventually, they moved the spoon’s position so that it now cupped my genitals. The senior officer had become so exasperated by this time that he spun the wheel really hard, earning them a particularly bad case of screaming. He admonished me, “Ang hirap sa iyo, alam mo na, na alam namin, na nagsisinungaling ka, ipinipilit mo pa rin ang istorya mo! Kaya pala Obet ang pangalan mo, e. Obstinate ka!” (“The problem with you is, you know that we know that you are telling us lies. Yet, you insist on your story! So that’s why your name is Obet. You’re obstinate!” I thought back: Well, it’s all or nothing. Whether my twenty-four hours are up or not yet, I choose nothing.

Spin a wheel. All or nothing?

Nothing. Like Basilio.

When they escorted me to my cell, I was utterly exhausted, physically and emotionally. But I was at peace with myself.

A day after, the jailers brought in a new detainee. It was Jun Suarez, who handled the printing of Taliba ng Bayan! I stared at him, unbelieving. I was never even asked about it, so how did they trace him? Apparently, Jun’s wife, who was a journalist, was under suspicion and placed under surveillance. That led the military to their home, where Jun kept the printing paraphernalia. So, the “sunog” (series of raids) was still raging.

One or two nights after that, we were telling each other stories to pass the time and distract ourselves from the tension. Onie was telling us about his girlfriend, who had broken up with him, a real sob story. Then it was the turn of somebody else, who ended up telling us about his girl too. After he gave a detailed description, Onie’s ears perked up. He was suddenly curious. Then Onie asked, pointing to his face, “Did she have a mole here?” Silence. When it dawned on us that he thought that was his girlfriend, we all spontaneously erupted into hard, long, boisterous, tearful laughter. As the laughter rolled on and on, we sensed that the tone had gradually shifted, and it was now directed at our jailers. As it died down, someone shouted a defiant, “’Tang ‘na ‘nyo!” (cuss words are the same in any language, aren’t they?) That triggered another round of even more boisterous, intentionally louder laughter, directed this time at more than our jailers. It sounded like we wanted the whole camp – no, the whole city – to hear our taunts. In the darkest days of martial rule in the Philippines, inside a cramped jail cell in a military camp that housed captives with battered bodies, unbroken human spirits proclaimed their freedom and flaunted their defiance of dictatorship with contemptuous laughter at their military captors and the authoritarian system that jailed them. I slept well that night.

New world record in rice yield set using the System of Rice Intensification (SRI)

Below are the first few paragraphs of a story on the business pages of the Philippine Star (page B-4), Dec. 18, 2011.

Indian farmer sets new world record in rice yield

MANILA, Philippines – Indian officials have confirmed a farmer’s claim of beating the rice yield world record of 19 tons per hectare previously held by hybrid rice developer Yuan Long-ping of China.

Sumant Kumar, a rice farmer from India’s state of Bihar who uses a new rice-growing method called the System of Rice Intensification (SRI), reported a harvest of 22.4 tons (448 cavans) per hectare last November. His claim was confirmed in a verification visit by Bihar State agriculture officials, including the agriculture director, the official in charge of national food security, “a team of agriculture experts”, and the Nalanda district agriculture officer, who said, “the team found the claims true.”

Sumant’s neighbors got slightly lower yields, but still ahead or at par with the previous world record. Rice farmer Krishna Kumar got 22 tons, Nitish Kumar 19.6, Ramanand Singh 19.2 and Sanjay Kumar 19 tons. All used the SRI method. Almost 90 percent of rice farmers in the Nalanda district are already using SRI, district agriculturist Sudama Mahto said.

100-kilometer zone around the BNPP

The radius of the danger zone around the Fukushima nuclear plant that must be evacuated has now been extended to 100 kilometers.

If a similar 100-kilometer danger zone were declared around the Bataan Nuclear Power Plant (BNPP), the following maps show which areas will be affected:

100-km zone around the BNPP

100-km zone around the BNPP

100-km zone around the BNPP

BNPP hypothetical 50-mile (80.5 km) radius evacuation zone: Batangas

 

Japanese authorities declared a 20-km evacuation zone around the Fukushima nuclear plant. But the U.S. Nuclear Regulatory Commission (NRC) issued on March 16, 2011, a warning to U.S. citizens living in Japan to evacuate to safer areas if they were living within 50 miles (80.5 km) of the radioactive plant.

These series of maps show which parts of Central Luzon, Metro Manila and Souithern Tagalog will be affected if a similar 80.5-km radius evacuation zone had to be declared due to a hypothetical nuclear disaster at the Bataan Nuclear Power Plant (14.6291667N, 120.3136111E). The whole of Bataan will have to be evacuated.

In Batangas, the following areas will be affected:

 

 

BNPP danger zone 38/43

BNPP danger zone 39/43

BNPP danger zone 40/43

BNPP danger zone 41/43

BNPP danger zone 42/43

BNPP danger zone 43/43

BNPP hypothetical 50-mile (80.5 km) radius evacuation zone: Cavite

 

Japanese authorities declared a 20-km evacuation zone around the Fukushima nuclear plant. But the U.S. Nuclear Regulatory Commission (NRC) issued on March 16, 2011, a warning to U.S. citizens living in Japan to evacuate to safer areas if they were living within 50 miles (80.5 km) of the radioactive plant.

These series of maps show which parts of Central Luzon, Metro Manila and Souithern Tagalog will be affected if a similar 80.5-km radius evacuation zone had to be declared due to a hypothetical nuclear disaster at the Bataan Nuclear Power Plant (14.6291667N, 120.3136111E). The whole of Bataan will have to be evacuated. The western most barangays of Laguna, Brgy. Magsaysay and Brgay. Langgam are just outside the danger zone.

In Cavite, the following areas will be affected:

 

BNPP danger zone 30/43

BNPP danger zone 31/43

BNPP danger zone 33/43

BNPP danger zone 34/43

BNPP danger zone 35/43

BNPP danger zone 36/43

BNPP danger zone 37/43

BNPP hypothetical 50-mile (80.5 km) radius evacuation zone: Southern Metro Manila

Japanese authorities declared a 20-km evacuation zone around the Fukushima nuclear plant. But the U.S. Nuclear Regulatory Commission (NRC) issued on March 16, 2011, a warning to U.S. citizens living in Japan to evacuate to safer areas if they were living within 50 miles (80.5 km) of the radioactive plant.

These series of maps show which parts of Central Luzon, Metro Manila and Souithern Tagalog will be affected if a similar 80.5-km radius evacuation zone had to be declared due to a hypothetical nuclear disaster at the Bataan Nuclear Power Plant (14.6291667N, 120.3136111E). The whole of Bataan will have to be evacuated.

In the southern part of Metro Manila, the following areas will be affected:

BNPP hypothetical 50-mile (80.5 km) radius evacuation zone: Northern Metro Manila

Japanese authorities declared a 20-km evacuation zone around the Fukushima nuclear plant. But the U.S. Nuclear Regulatory Commission (NRC) issued on March 16, 2011, a warning to U.S. citizens living in Japan to evacuate to safer areas if they were living within 50 miles (80.5 km) of the radioactive plant.

These series of maps show which parts of Central Luzon, Metro Manila and Souithern Tagalog will be affected if a similar 80.5-km radius evacuation zone had to be declared due to a hypothetical nuclear disaster at the Bataan Nuclear Power Plant (14.6291667N, 120.3136111E). The whole of Bataan will have to be evacuated.

In the northern part of Metro Manila, the following areas will be affected:

BNPP hypothetical 50-mile (80.5 km) radius evacuation zone: Bulacan

Japanese authorities declared a 20-km evacuation zone around the Fukushima nuclear plant. But the U.S. Nuclear Regulatory Commission (NRC) issued on March 16, 2011, a warning to U.S. citizens living in Japan to evacuate to safer areas if they were living within 50 miles (80.5 km) of the radioactive plant.

These series of maps show which parts of Central Luzon, Metro Manila and Souithern Tagalog will be affected if a similar 80.5-km radius evacuation zone had to be declared due to a hypothetical nuclear disaster at the Bataan Nuclear Power Plant (14.6291667N, 120.3136111E). The whole of Bataan will have to be evacuated.

In Bulacan, all town lying along Manila Bay and the southwestern towns of San Rafael, Baliuag, Bustos, Pandi, Sta. Maria, including San Jose del Monte City are within the danger zone.

BNPP danger zone 17/43

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BNPP hypothetical 50-mile (80.5 km) radius evacuation zone: Pampanga

Japanese authorities declared a 20-km evacuation zone around the Fukushima nuclear plant. But the U.S. Nuclear Regulatory Commission (NRC) issued on March 16, 2011, a warning to U.S. citizens living in Japan to evacuate to safer areas if they were living within 50 miles (80.5 km) of the radioactive plant.

These series of maps show which parts of Central Luzon, Metro Manila and Souithern Tagalog will be affected if a similar 80.5-km radius evacuation zone had to be declared due to a hypothetical nuclear disaster at the Bataan Nuclear Power Plant (14.6291667N, 120.3136111E). The whole of Bataan will have to be evacuated.

In Pampanga, all towns will have to be evacuated, except a few barangays on its northeastern border with Nueva Ecija.

 

BNPP danger zone 10/43

 

 

 

BNPP  danger zone 11/43

 

 

 

BNPP danger zone 12/43

 

 

 

 

BNPP danger zone 13/43

 

 

 

 

BNPP danger zone 14/43

 

 

 

 

BNPP danger zone 15/43BNPP danger zone 16/43

 

The southern part of the map above includes the northern Bulacan barangays of Banca-banca, Pulong Bayabas, and Panlumalok, all within the danger zone.

 


BNPP hypothetical 50-mile (80.5 km) radius evacuation zone: Tarlac

Japanese authorities declared a 20-km evacuation zone around the Fukushima nuclear plant. But the U.S. Nuclear Regulatory Commission (NRC) issued on March 16, 2011, a warning to U.S. citizens living in Japan to evacuate to safer areas if they were living within 50 miles (80.5 km) of the radioactive plant.

These series of maps show which parts of Central Luzon, Metro Manila and Souithern Tagalog will be affected if a similar 80.5-km radius evacuation zone had to be declared due to a hypothetical nuclear disaster at the Bataan Nuclear Power Plant (14.6291667N, 120.3136111E). The whole of Bataan will have to be evacuated.

In Tarlac, Bamban and parts of Capas (Sta. Juliana, O’Donell will be inside the danger zone (bluish tint), while all other towns will be outside the danger zone.

BNPP danger zone 4/43

 

Barangays Sta. Juliana, O’Donnell, Marugbu, and Cutcut of Capas are inside the danger zone.

 

bnpp danger zone 5/43

 

 

 

BNPP danger zone 6/43

 

 

 

 

 

BNPP danger zone 7/43

 

 

 

 

 

BNPP danger zone 8/43

 

 

 

 

 

BNPP hypothetical 50-mile (80.5 km) radius evacuation zone: Zambales

While Japanese authorities declared a 20-km evacuation zone around the Fukushima nuclear plant, the U.S. Nuclear Regulatory Commission (NRC) issued on March 16, 2011, a warning to U.S. citizens living in Japan to evacuate to safer areas if they were living within 50 miles (80.5 km) of the radioactive plant.

The following series of maps show which parts of Central Luzon, Metro Manila and Souithern Tagalog will be affected if a similar 80.5-km radius evacuation zone had to be declared due to a hypothetical nuclear disaster at the Bataan Nuclear Power Plant (14.6291667N, 120.3136111E). The whole of Bataan will of course have to be evacuated.

In Zambales, all southern towns up to Botolan will be inside the danger zone (bluish tint). The capital Iba and all towns to its north will be outside the danger zone.

Zambales danger zone

The map below covers southeast of the map above.

Zambales danger zone

Zambales danger zone

The map below shows east of the map above and may include parts of Pampanga.

Zambales danger zone 3/3

Chemical farming: inorganic or non-organic?

Why chemical farming should be called “non-organic” instead of “inorganic”

by Roberto Verzola

In farming, the use of agrochemicals which are harmful to human health, soil life, and the environment is often carelessly called inorganic farming.

Inorganic farming is a confusing term that the agrochemical industry uses to obfuscate issues against chemical farming. The more accurate term to describe chemical farming is non-organic farming.

In chemistry, organic simply means “contains carbon”. The study of chemistry is generally divided into two fields: organic chemistry, which studies substances that contain carbon, and inorganic chemistry, which studies substances that do not contain carbon.

The agrochemical industry clings to this distinction between organic and inorganic chemistry. Thus, they can say with a straight face that their agrochemicals, regardless of toxicity, are also “organic” as long as these contain carbon, and concede the term “inorganic” only to those agrochemicals without carbon.

The term “organic” in farming has a very different meaning from “organic” in chemistry. As defined by the International Federation of Organic Agriculture Movements (IFOAM), it is:

“a production system that sustains the health of soils, ecosystems and people. It relies on ecological processes, biodiversity and cycles adapted to local conditions, rather than the use of inputs with adverse effects.”

As the generally-accepted definition of organic farming in most parts of the world, this IFOAM definition is backed up by a long list of specific methods and practices which organic farmers and producers must observe, and which are subject to third-party inspection to ensure the quality of organic products.

Thus, when organic farming advocates debate with the agrochemical industry and their representatives in the academe and the government about “organic”, they are talking of completely different concepts, and it is easy for the media and the public to get confused.

The simplest way to clarify the real issue is to use two different terms when describing the opposite of organic. In chemistry, the opposite term is inorganic, for compounds that do not contain carbon. In farming, the opposite term is non-organic, for production systems that do not sustain the health of soils, ecosystems and people and are instead harmful to them.

It is to the interest of the agrochemical industry to confuse the issue and prevent the spread of organic farming. Thus, its representatives in the academe and the government can be expected to keep using the term inorganic only for chemical compounds that do not contain carbon, and to describe their carbon-containing agrochemicals as “organic”, which may be true in the chemistry sense but is completely untrue in the farming sense.

So the next time you encounter agrochemical defenders in a debate, make sure you use the term “non-organic” to describe chemical-based farming systems, and to leave the term “inorganic” for chemistry and the agrochemical industry. (March 26, 2011)

The Philippines: An Ecological Perspective

THE PHILIPPINES: AN ECOLOGICAL PERSPECTIVE

 

I. The Birth of Luzviminda

by Roberto Verzola (rverzola@gn.apc.org), Convenor, Philippine Greens

Fifty million years ago, the archipelago of more than 7,000 islands that now calls itself the Philippines did not exist yet.



Instead, there was Mindoro and Palawan, just off the Asian landmass and south of what is now Taiwan, Zamboanga somewhere just north of the equator, and the island group of Samar, Leyte and Surigao, around the area of what are now Timor and Papua Islands. But the Earth’s geological plates move ever so slowly, and the various landmasses they support move along with them. In the process, as one gigantic plate moves against another, some sea floors are pushed upwards, until they break through the surface of the sea and become new islands.

From 50 million years ago to the present, plate tectonics created and assembled the archipelago that we will call Luzviminda. Mindoro and Palawan will creep due south. The Samar-Leyte-Surigao island group will move thousands of kilometers in a great arc – first westward, then gradually northward. Zamboanga will do a random walk, eventually colliding with another great landmass that will emerge from the sea.

After five million years, 45 million years ago, north-east of Zamboanga, a huge land mass rose from the sea. This landmass would eventually comprise the part of Luzon that extends from Quezon to Ilocos. This Luzon would be oriented in the east-west, rather than today’s north-south direction. At around this time, a mini-archipelago of tiny islands would also emerge southwest of Zamboanga. These little island would eventually become Basilan, Sulu and Tawi-tawi.

After another five million years, 40 million years ago, another group of islands would emerge from the sea, south of the equator and west of the Samar-Leyte-Surigao group. These newly born islands are Panay, Negros, Cebu, Bohol and parts of northeastern Mindanao. They would joint the Samar-Leyte-Surigao group moving through the great arc westwards first, and then northwards, towards their rendezvous with the rest of Luzviminda.

Over the next 28 million years, these island groups would perform a great dance, as the Earth’s plates gradually inched in various directions egged on by the plastic flow of molten rocks deep in the bowels of the planet. Luzon would move counter-clockwise around Zamboanga, nearly a quarter of a circle, even while they both travel north, towards Taiwan. Mindoro-Palawan would complete its southward journey. Samar-Leyte-Surigao, would travel farther northwards.

At the end of these 28 million years, 12 million years ago, Zamboanga’s northern portion today would be almost touching the shores of Batangas, the closest it would ever approach Luzon. Zamboanga would then reverse itself and move southwards, along a path that would lead to a collision with another great landmass – Mindanao. After another five million years, seven million years ago, Mindoro would still find itself due west of Pangasinan, and Zamboanga due west of Panay.

The pace now quickens, and the Luzvimindan archipelago is gradually taking shape. After two million years, five million years ago, the last of the great Luzvimindan landmasses emerges from the sea due south of Negros. This is the landmass that would eventually become Central Mindanao.

Thus, Luzviminda is assembled into more than 7,000 islands, born out of the sea and populated by living forms that uniquely evolved in isolation from the mainland masses of the Earth.

II. Philippine Ecological Situation, Some Indicators

Let me start with the following list of indicators that gives us some idea of the ecological situation in the Philippines:

GENERAL

  • Population: 91.983 million (2009; 76.504 million in 2000); 1.93%/yr (2010 est.; 1.96% 2009; 1.99% 2008 ~1.8 million) per year; ~100 million by 2012 (Note: Wikipedia says 97.977 million est. as of July 2010)
  • Total land area: 30 million ha; 300,000 sq. km. (density: 3.07 persons/ha; 3,260sqm/person)

ATMOSPHERE

  • CO2 level: 390 ppm (the point of no return, according to many, is 350 ppm)

AIR

  • Total suspended particulates level in M.Manila: 193% mean, 304% max. (circa 2002)
  • CO2 emissions: 0.8 metric tons/capita (2007, World Development Indicators, WB)

WATER

  • Rivers:: 12.5% dead out of 88 surveyed; 17% “grossly polluted” out of 69 surveyed (1990)
  • Municipal waters : 85% overfished
  • Heavy metals in Manila Bay: copper, 50%; mercury, 100%; zinc, 200%
  • Coral reefs: only 5% in excellent condition (new threat: global warming)
  • Increase in fishery production: 0.72%

LAND

  • % of solid wastes recycled in Metro Manila: 6%
  • Rate of land conversion: 3,659 ha/year
  • Food security: agric, 46.4% (13.9M ha); rice, 10.7%
  • Fertilizer consumption: 75.6 kg/ha (1980); 119.3 kg/ha (1996); 135 kg/ha (2005)

FORESTS

  • Foreign mining applications: 27.5% (8.25 million ha)
  • Remaining old growth forest: 2.7% (800,000 ha)
  • Declining forest cover: 1948, 50%; 1987, 24%; 1989; 21%; 1999, 18.6% (5.6 million ha); 2010, <10%; -2.4%/yr (1990-2000); -1.5%/yr (2000-2005); -32.3% (1990-2005)

HABITAT

  • Endemism: birds, 33-44%; mammals, 64%; reptiles, 63-68%; amphibians, 53-78%; swallowtail butterflies, 43%; flowering plants, 44%; 13,500 plant species; 170,000 animal species
  • Endangered species: more than 400 (2010); worldwide: the Sixth Great Extinction

This list is, of course, just a jumble of data. It may give us a general impression of the bad state of the environment, but it is not so helpful in highlighting which among them are symptomatic and which ones are causative.

 

III. Making Sense of the Data: A Framework of Analysis

I would like to share a framework which the Philippine Greens use for analyzing the ecological situation which can give us a qualitative feel for the country’s ecological status and trends. Such a framework will also help each locality see where it stands compared to the rest of the country.

Three major categories of environmental problems

It will be useful to distinguish among three major categories of environmental problems in the country:

  • problems associated with the simple extraction of natural resources from land or water, often occurring in a rural/traditional setting (nature abuse: mining; logging; conversion of forests into farms; conversion of food farms into export plantations; overfishing) Result: loss of rural livelihoods, destruction of ecosystems, the Sixth Great Extinction
  • problems associated with the entry of newer production technologies and their side effects, often occurring in a more urban/modern setting (toxic industrialism: disposable, non-degradable, toxic raw materials; chemical farming and genetic engineering; intensive energy extraction through dams, coal, oil, and agrofuels; energy-intensive construction materials) Result: toxic proliferation in air, water and soil; cancers and other diseases
  • problems associated mainly with activities outside the country, over which we have very little control and power to solve ourselves because we must rely on international negotiations (ozone depletion; greenhouse gases and climate change; sea level rise; cross-border toxic flows) Result: relative powerlessness among ordinary citizens and local communities.

Between the first two general types, we can expect a continuum of problems, representing localities in various stages of urbanization. As globalization continues its relentless intrusion into the countryside, we can expect Philippine ecological problems to complicate, as problems of the second type superimpose themselves and interact with problems of the first type, and as some problems of the third type assume greater importance.

There has been great debates about that is/are the root cause(s) of these environmental problems. While these debates can be acrimonious and confusing, they are necessary. Doctors who prescribe medicine or a medical procedure for a headache must first carefully determine the cause of the headache – whether it is brain tumor or poor eyes – lest their prescription do more harm than good.

IV. Looking for Root Causes

It is very instructive to look at the experience of the United States, where ecologist Barry Commoner (The Closing Circle, 1971; Making Peace with the Planet, 1975) studied the rapid increase of environmental pollution in the post-war U.S. and compared the contribution of three major causative factors:

  • – Increasing population, which required more resources to meet the needs of more people;
  • – Increasing affluence, expressed in terms of the rate of consumption per capita, which required even more resources to meet the increasing needs and wants of each individual; and
  • – Increasingly harmful technologies, which increased the types and amounts of pollutants and other damage associated with each unit of commodity produced.

The total environmental impact (I) could therefore be roughly computed as follows: I = P*A*T, where I is the environmental impact in terms of total pollution, P is the total population, A is the affluence factor or per-capita goods consumption, and T is the technology factor or amount of pollution per unit good. In all probability, the exact relationship is exceedingly more complex, because population, affluence and the current state of technologies are not independent variables but instead interact with each other in various complex ways.

Which of these factors contributed the most environmental damage was long debated in U.S. environmental circles. Authors like Paul Ehrlich (The Population Bomb, 1968) emphasized the population factor and therefore came up with a different set of solutions. Commoner conclusively settled the issue through statistical studies of hundreds of pollutants over the years 1946 to 1970, in which he compared their rates of increase with the rates of increase in population and in GNP. Thanks to the detailed economic and environmental statistics compiled by the U.S. government and industry, Commoner was able to quantify the approximate individual contribution of each of the three factors in the overall degradation of the environment.

He found out that increasing post-war affluence contributed 5%, population growth 15%, and newer, more destructive technologies a full 80% of the degradation.

Below are some of the rates of increase Commoner compiled for the period 1946-1970, which led him to the above conclusion:

Polluting product     % increase

Returnable softdrink bottle 53,000
Synthetic fibers 5,980
Mercury for chlorine production 3,930
Mercury for paint production 3,120
Aircon compressors 2,850
Plastics 1,960
Fertilizer nitrogen 1,050
Electric housewares 1,040
Synthetic organic chemicals 950
Aluminum 680
Chlorine gas 600
Electricity 530
Pesticides 390
Wood pulp 313
Truck freight 222
Consumer electronics 217
Motor fuel 190
Cement 150
(GNP) 126
Food 45
Textile, clothes 42
Household utilities 42
Steel, copper and other metals 42
(Population) 42
Raildroad freight 17
Lumber -1
Cotton -7
Returnable beer bottle -36
Wool -42
Soap -76
Animal horsepower -87

These numbers showed that post-war pollution increased dramatically in the U.S. way beyond what could be explained by the increase in population and affluence. The largest culprit was the continual substitution of existing technologies (the bottom items showing negative growth) with more powerful and therefore usually more destructive ones (the top items).

No one has similarly collected the statistics for the Philippine case. We can start by assuming that the environmental problems of highly-urbanized areas can be similarly attributed to the same three factors in roughly similar proportions: a higher population (~15%), higher consumption per capita (~5%) and more harmful technologies (~80%). We are justified in starting with this assumption because many of the technologies that are now coming into the Philippines are precisely those which caused the rapid post-war rise of environmental pollutants in the U.S. that Commoner studied in such detail. Furthermore, the current growth of our urban centers echoes the rapid post-war growth of U.S. urban centers.

Although rural birth rates tend to be somewhat higher rate than urban birth rates, this is counterbalanced by the migration of people from rural to urban areas. In situations where the outmigration outpaces the population increase, rural areas might even be experiencing a decrease in population. Certainly, urban areas tend to act as magnets for rural folk in search of jobs as well as the urban lifestyle.

Just the same, the continuing human encroachment of forest lands and other wildlife habitat indicate that rural population growth continues to exert its own pressure against these habitats. In this case, population growth is a problem less in the Malthusian sense of one species outstripping its food supply but more in the anthropocentric sense of the human species appropriating for its exclusive use the living space which serve as habitat of other species.

Thus, in the Philippine case, the debate remains unsettled. Those of us who want to help “curing” the environmental malaise that afflicts our country must participate in this debate.

On a personal note, I have continued to pursue this matter of looking at root causes that I actually went back to graduate school last 2008, at age 56 when others are already counting their years before retirement. Because I thought economics had a lot to do with our environmental problems, I took a masters in economics. Hopefully, after I conclude my studies, I will have more to contribute to the debate.

 

V. Choosing a Positive Advocacy

In the meantime, also by personal choice, I have focused on certain areas of positive advocacy where I thought I could make a difference.

I would like to share with you my work among farmers, promoting through training and self-education a new method of growing rice, called the System of Rice Intensification (SRI). To sum it up, this method is a winner! 1) It reduces farmers’ costs, which is the most important thing because they have have to borrow money to raise their own food. 2) It increases rice yields, which is also important because it gives them more flexibility in shifting some of their plots to vegetables and other higher-value crops. 3) It even weans them away from agrochemicals, which is good for their own health as well as their families, and also for the health of consumers and of the environment. All these are within reach of ordinary rice farmers, if they are willing to change some of their age-old practices. Small changes, big results.

This is what the network I coordinate, SRI-Pilipinas, is promoting among farmers. We have been conducting SRI trainings for farmers since 2006, a group at a time. In fact, a farmer at a time. Nationwide.

We have two ways of doing so.

We send trainers anywhere in the Philippines to conduct one-day trainings for farmer groups who are willing to try the method in a few hundred square meters of their farm. We have now reduced our costs to around P6,000 per training. Half for the trainer’s fee, and half for the trainer’s expenses (food, transport, training materials, and so on). From 2006 to 2008, we were able to conduct trainings in 49 provinces, which gave us more trainers. In our current round, we have scheduled or finished one-day trainings in 45 municipalities/cities, 5 short of our target of 50.

The other way is education farmer by farmer. We send out free SRI primers by mail to those who request them (usually by texting their name and mailing address to us). To those willing to pay for the cost of a DVD, we send a training video on SRI. Some of our trainers learned SRI simply by reading our primer, or watching the SRI video. With this approach, at a cost of P20 per farmer, they can learn to reduce their costs, improve their yields, and wean themselves away from toxic chemicals.

With this advocacy, we are winning over converts, a few farmers at a time. With small changes, we are changing lives. We are changing mindsets.

Farmers who learn SRI acquire new respect for the rice plant, when they discover that much potential lay untapped within it. Others had thought the plant had reached its limits and must therefore now be modified through high-tech breeding and genetic engineering for it to continue feeding us.

SRI farmers learn that agrochemicals in fact kill soil life, on which plants depend for their sustenance. They begin to appreciate the health that a naturally-grown plant displays, because they partake of that health. And they begin to look differently at all the other plants around them.

From small acts, a new path is taken. A new environmental consciousness takes root. A new seed promises a different future. Through our own small acts, each of us helps build that future.

(Feb. 22, 2011)

 

An 80-km BNPP evacuation radius will include all of Bataan and Pampanga, most of Zambales, Bulacan, Metro Manila and Cavite, and parts of Tarlac and Batangas

PRESS STATEMENT (March 18, 2011)

An 80-km BNPP evacuation radius includes all of Bataan and Pampanga, most of Zambales, Bulacan, M.Manila and Cavite, and parts of Tarlac and Batangas

The U.S. Nuclear Regulatory Commission (NRC) issued on March 16, 2011 the following warning to U.S. citizens in Japan: “Under the guidelines for public safety that would be used in the United States under similar circumstances, the NRC believes it is appropriate for U.S. residents within 50 miles of the Fukushima reactors to evacuate.” (full text at http://www.nrc.gov/reading-rm/doc-collections/news/2011/11-050.pdf). The 50-mile evacuation radius is equivalent to 80.5 kilometers.

The U.S. warning suggests that the Japanese authorities, who only ordered evacuation of people within 20 km of the nuclear disaster, have been downplaying the risks associated with the ongoing nuclear meltdown. Indeed, most governments and the nuclear industry have a long history of downplaying risks, keeping secret the real extent of damage to human life and health, and outright lies about the dangers as well as costs of nuclear plants.

The Fukushima meltdown highlights another problem with nuclear energy: in times of natural disasters, when regular as well as emergency sources of power tend to fail, nuclear plants compete for the attention of emergency services because they absolutely need significant amounts of power and cooling water to prevent runaway overheating and a subsequent meltdown. When the Japanese government’s attention and resources need to be fully focused on attending to the victims of the earthquake and subsequent tsunami that hit their country, attention and resources are instead diverted to coping with the danger of nuclear meltdown, which threatens consequences that are as dire if not worse than the natural disasters themselves.

If the Bataan Nuclear Power Plant in Morong, Bataan (14°37’45”N, 120°18’49”E) were operated, and in a worst-case scenario, a meltdown similar to that which triggered the U.S. NRC evacuation warning occurred, the 80.5-kilometer radius to be evacuated will affect more than 20 million Filipinos (see map below):

  • practically all of Bataan and Pampanga;
  • the Zambales towns/cities of Olongapo, Subic, Castillejos, San Antonio, San Narciso, San Felipe, San Marcelino, Cabangan and Botolan;
  • Bamban, Tarlac;
  • the Bulacan towns/cities of Meycauayan, Bocaue, Bulacan, Sta. Maria, Hagonoy, Paombong, Guiguinto, Malolos, Plaridel, Calumpit, Pulilan and Baliuag;
  • the metropolitan cities of Valenzuela, Navotas, Malabon, Caloocan, Manila, San Juan, Makati, Pasay, and Las Pinas; parts of Quezon City, Pasig, Mandaluyong, Taguig, Paranaque, Muntinlupa;
  • the Cavite towns/cities of Bacoor, General Trias, Tanza, Dasmarinas, Trece Martires, Magallanes, Naic, Ternate, and Maragondon; and
  • Nasugbu, Lian and parts of Tuy in Batangas.

Ateneo University in Quezon City (81.9 km) and the University Avenue in U.P. Diliman (80.8 km) are just outside the zone. But the Quezon City Hall itself (79.2 km), most of EDSA and the business areas alongside it, as well as the whole Araneta Center in Cubao (79.9 km) all fall within the danger zone. While a BNPP meltdown is a hypothetical case, we now know it can indeed happen, as it is now happening in Japan. The extent of the 80.5-km danger zone gives us an idea of the horrendous disruption in people’s lives and livelihoods that such a meltdown can cause.

President Noynoy Aquino has repeatedly said that the BNPP will not be reopened. This should put to rest any worries that Filipinos may be threatened by a similar disaster that the Japanese are now going through.

However, on March 16, the same day the U.S. NRC sent out its 80.5-km evacuation warning, the Department of Science and Technology (DOST) Secretary Mario Montejo told the media that he was for the reopening of the BNPP, in open defiance of the clearly-stated policy statements of the President.

Unless the President publicly disciplines his errant DOST secretary, his administration will be seen to be engaged in double-talk, on one hand assuring the public that the BNPP will not be reopened, but on the other hand mobilizing the bureaucracy and public funds towards reopening the nuclear plant.

What is it really, Mr. President?

ROBERTO VERZOLA
Convenor, Philippine Greens
For confirmation and details, please call: 0929-856-1930


Minutes of the final (June 8) hearing on election fraud of the House Committee on Suffrage now available

Please get the minutes on this site.

Minutes of June 3 hearing of the House Committee on Suffrage now available

Please get the minutes on this site.

Minutes of the Locsin Committee Hearing on Election Fraud held on June 2

The minutes of the hearing on election fraud held by the Committee on Suffrage (chaired by Cong. Teddy Locsin Jr.) are now available here.